Quantitative research is a powerful tool for those looking to gather empirical data about their topic of study. Using statistical models and math, researchers evaluate their hypothesis.
When researchers look at gathering data, there are two types of testing methods they can use: quantitative research, or qualitative research. Quantitative research looks to capture real, measurable data in the form of numbers and figures; whereas qualitative research is concerned with recording opinion data, customer characteristics, and other non-numerical information.
Quantitative research is a powerful tool for those looking to gather empirical data about their topic of study. Using statistical models and math, researchers evaluate their hypothesis. An integral component of quantitative research - and truly, all research - is the careful and considered analysis of the resulting data points.
There are several key advantages and disadvantages to conducting quantitative research that should be considered when deciding which type of testing best fits the occasion.
Quantitative research is primarily designed to capture numerical data - often for the purpose of studying a fact or phenomenon in their population. This kind of research activity is very helpful for producing data points when looking at a particular group - like a customer demographic. All of this helps us to better identify the key roots of certain customer behaviors.
Businesses who research their customers intimately often outperform their competitors. Knowing the reasons why a customer makes a particular purchasing decision makes it easier for companies to address issues in their audiences. Data analysis of this kind can be used for a wide range of applications, even outside the world of commerce.
Unlike qualitative research questions - which often ask participants to divulge personal and sometimes sensitive information - quantitative research does not require participants to be named or identified. As long as those conducting the testing are able to independently verify that the participants fit the necessary profile for the test, then more identifying information is unnecessary.
Whereas qualitative research demands close attention be paid to the process of data collection, quantitative research data can be collected passively. Surveys, polls, and other forms of asynchronous data collection generate data points over a defined period of time, freeing up researchers to focus on more important activities.
Quantitative research can capture vast amounts of data far quicker than other research activities. The ability to work in real-time allows analysts to immediately begin incorporating new insights and changes into their work - dramatically reducing the turn-around time of their projects. Less delays and a larger sample size ensures you will have a far easier go of managing your data collection process.
The careful and exact way in which quantitative tests must be designed enables other researchers to duplicate the methodology. In order to verify the integrity of any experimental conclusion, others must be able to replicate the study on their own. Independently verifying data is how the scientific community creates precedent and establishes trust in their findings.
Quantitative research is an incredibly precise tool in the way that it only gathers cold hard figures. This double edged sword leaves the quantitative method unable to deal with questions that require specific feedback, and often lacks a human element. For questions like, “What sorts of emotions does our advertisement evoke in our test audiences?” or “Why do customers prefer our product over the competing brand?”, using the quantitative research method will not derive a meaningful answer.
Creating a quantitative research model requires careful attention to be paid to your design. From the hypothesis to the testing methods and the analysis that comes after, there are several moving parts that must be brought into alignment in order for your test to succeed. Even one unintentional error can invalidate your results, and send your team back to the drawing board to start all over again.
Bad actors looking to push an agenda can sometimes create qualitative tests that are faulty, and designed to support a particular end result. Apolitical facts and figures can be turned political when given a limited context. You can imagine an example in which a politician devises a poll with answers that are designed to give him a favorable outcome - no matter what respondents pick.
Whether due to researchers' bias or simple accident, research data can be manipulated in order to give a subjective result. When numbers are not given their full context, or were gathered in an incorrect or misleading way, the results that follow can not be correctly interpreted. Bias, opinion, and simple mistakes all work to inhibit the experimental process - and must be taken into account when designing your tests.
Quantitative research often seeks to gather large quantities of data points. While this is beneficial for the purposes of testing, the research does not come free. The grander the scope of your test and the more thorough you are in it’s methodology, the more likely it is that you will be spending a sizable portion of your marketing expenses on research alone.
Polling and surveying, while affordable means of gathering quantitative data, can not always generate the kind of quality results a research project necessitates.
Numerical data is a vital component of almost any research project. Quantitative data can provide meaningful insight into qualitative concerns. Focusing on the facts and figures enables researchers to duplicate tests later on and create their own data sets. Tools like brand name survey questions can help businesses collect actionable quantitative data to evaluate the effectiveness of their branding efforts.
To streamline your quantitative research process:
Set up and begin receiving results within minutes.
Sign up for free, no contract required.